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Agenda
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๏ First Half (1 hour 15 min)

- Background: unified frameworks for GNN (35 min)

- Preliminary: graph convolutions (40 min)

- BREAK (15min)

๏ Second Half (1 hour)

- Introduction: a new unified framework (40 min)

- Future directions (20min) 

- Q&A (15min)
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Graph is Pervasive

Chemical Structure

BrainSocial Networks Internet

Covid-19

Particle System 
(Physics)Internet of Things

https://github.com/MilesCranmer/symbolic_deep_learning
https://github.com/MilesCranmer/symbolic_deep_learning


Graphs in CV

5Lu, Cewu, et al. "Visual relationship detection with language priors." ECCV, 2016.

Graphs in Image Data: 
Scene Graph

Nodes Edges



Graphs in CV

Image/Video Captioning
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Yang, Xu, et al. "Auto-encoding scene graphs for 
image captioning." Proceedings of the IEEE/CVF 

conference on computer vision and pattern 
recognition. 2019.

(e): 325557 (f): 396209

Motorbike

Road

Park

Dirty

BASE: a motorcycle parked on the side of 
a road
BASE+MGCN: a motorcycle parked on the 
side of a road
SGAE: a motorcycle is parked on the 
gravel road
GT: a motor bike parked on the side of 
the road by the bushes

Motorbike

Road

Park

Dirty

BASE: a motorcycle parked on the side of 
a road
BASE+MGCN: a motorcycle parked on the 
side of a road
SGAE: a motorcycle is parked on the 
gravel road
GT: a motor bike parked on the side of 
the road by the bushes

BASE: a city street with many cars
BASE+MGCN: a city street with many cars 
and buses
SGAE: a busy highway filled with lots of 
traffic
GT: there are many cars and buses on the 
busy highway

Road

On
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Bus
On

Road

On
Car

Bus
On

BASE: a city street with many cars
BASE+MGCN: a city street with many cars 
and buses
SGAE: a busy highway filled with lots of 
traffic
GT: there are many cars and buses on the 
busy highway

Road

On
Car

Bus
On

(b): 45710(a): 553879 (c): 76529

(d):177861

BASE: a building with a chair on the side 
of it
BASE+MGCN: a street with a motorbike 
and a chair on it
SGAE: a narrow alley with a chair and a 
motorbike on the side of it
GT: a narrow alley way with a chair by the 
side

BASE: a building with a chair on the side 
of it
BASE+MGCN: a street with a motorbike 
and a chair on it
SGAE: a narrow alley with a chair and a 
motorbike on the side of it
GT: a narrow alley way with a chair by the 
side

Road
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On
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On
Chair

Motorbike
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BASE: a building with a chair on the side 
of it
BASE+MGCN: a street with a motorbike 
and a chair on it
SGAE: a narrow alley with a chair and a 
motorbike on the side of it
GT: a narrow alley way with a chair by the 
side

Road

On
Chair

Motorbike
On

Green

BASE: a couple of elephants walking in a 
field 
BASE+MGCN: two elephants walking in 
the grass in a field
SGAE: a couple of elephants walking 
through a lush green forest
GT: two elephants standing in grassy area 
with trees around

Green

BASE: a couple of elephants walking in a 
field 
BASE+MGCN: two elephants walking in 
the grass in a field
SGAE: a couple of elephants walking 
through a lush green forest
GT: two elephants standing in grassy area 
with trees around

Yellow

BASE: a banana sitting on top of a bowl
BASE+MGCN: a cup of coffee next to a 
yellow banana
SGAE: a cup of coffee next to a ripe 
banana 
GT: an over ripened banana and a cup of 
coffee

Yellow

BASE: a banana sitting on top of a bowl
BASE+MGCN: a cup of coffee next to a 
yellow banana
SGAE: a cup of coffee next to a ripe 
banana 
GT: an over ripened banana and a cup of 
coffee

Black

BASE: a person walking in the street
BASE+MGCN: a person walking in the 
street with a black umbrella
SGAE: a person walking down street with 
a black umbrella in the rain
GT: a group of people walking down a wet 
rain soaked sidewalk

Black

BASE: a person walking in the street
BASE+MGCN: a person walking in the 
street with a black umbrella
SGAE: a person walking down street with 
a black umbrella in the rain
GT: a group of people walking down a wet 
rain soaked sidewalk

Structured reasoning 
for visual Q&A

Wang, Yanan, et al. "Vqa-gnn: Reasoning with 
multimodal knowledge via graph neural networks for 
visual question answering." Proceedings of the IEEE/
CVF International Conference on Computer Vision. 

2023.



Graphs in CV
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Graph as Auxiliary:
Knowledge graph for image classification 

Eleph-
ant

Large

Bush

Detection
Has
Has attribute
Looks like
Found in

Mouse

Trunk

Tail

Prediction: 
Elephant Shrew 

Elp. 
Shrew

Small

Marino, Kenneth et al. “The More You Know: Using Knowledge Graphs for Image Classification.” CVPR 2016



Graphs in CV
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ER(0.6)

ER(0.4) ER(0.2)

BA(7) BA(5)

BA(3)

BA(2) BA(1)

WS(8, 1.0)

WS(6, 1.0)

WS(4, 1.0)

WS(2, 1.0)

WS(8, 0.75)

WS(6, 0.75)

WS(4, 0.75)

WS(2, 0.75)

WS(8, 0.5)

WS(6, 0.5)

WS(4, 0.5)

WS(2, 0.5)

WS(8, 0.25)

WS(6, 0.25)

WS(4, 0.25) WS(2, 0.25)

WS(8, 0.0)

WS(6, 0.0)

WS(4, 0.0)

WS(2, 0.0)

Xie, Saining, et al. "Exploring randomly wired neural networks for image recognition." ICCV 2019.

Graphs in neural network architecture



Graphs in CV
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Relational Graphs
1 round of message exchange

⟺
1 2

4 3

4321

4321

a

b

5-layer MLP

⟺
1 2

4 3

4321

4321

⟺
1 2

4 3

4321

4321

Neural Networks
1 layer

c

Complete graph

WS-flex graph

WS-flex graph

Neural Net Performance

Translate to
5-layer MLP 

Translate to
ResNet-34

Exploring Relational GraphsRelational Graph Representation d

You, Jiaxuan, et al. "Graph structure of neural networks." International Conference on Machine Learning. PMLR, 2020.

Graph topology and neural network architectures



Graphs in CV
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conv
1x1

max
pool

conv
5x5

conv
3x3

conv
3x3

Loss

conv
1x1

max
pool

conv
5x5

conv
3x3

conv
3x3

Shared	MLP

…
Graph	Propagation

A B C

Zhang, C., et al,. Graph hypernetworks for neural architecture search. ICLR 2019

input  8x8

conv3x3  8x8

conv3x3  8x8

conv3x3  8x8 conv3x3  8x8

conv5x5  8x8

conv3x3  8x8 conv5x5  8x8

conv5x5  8x8

input  8x8

GCN Predictor Latency
Accuracy

Dudziak, Lukasz, et al. "Brp-nas: Prediction-based nas using gcns." Advances in Neural Information Processing Systems 33 (2020): 10480-10490.



Motivation: A Unified View
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Spectral Graph Message Passing

Low-pass Filter

Random WalkPage RankHeat Diffusion

Graph Wavelet Attention Model

Laplacian Smooth

ARMA filterDSF/BSF

Weisfeiler-Lehman
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S

Spatial

SpectralS

S

S

S
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S S

S

SS

A large number of graph neural networks, with different mechanisms
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Motivation: A Unified View
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Spectral Graph Message Passing

Low-pass Filter

Random WalkPage RankHeat Diffusion

Graph Wavelet Attention Model

Laplacian Smooth

ARMA filterDSF/BSF

Weisfeiler-Lehman

S

S

Spatial

SpectralS

S

S

S

SS

S S

S

SS

S

…

Challenge 
no uniform theoretical framework to compare them

This Tutorial

A large number of graph neural networks, with different mechanisms



Attempts to Unify GNNs

Compare GNNs with respect to their expressive power (ability to 
distinguish different graph structures)

14

z

Non-isomorphic graphs Isomorphic graphs

Different 
representation 

Same 
representation 

A powerful graph neural network model



WL-Test: on Spatial GNNs
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h(k)
u = AGGREGATE(k) ({(h (k−1)

v , h(k−1)
u )} ∣ v ∈ 𝒩(u))

hG = READOUT ({h(K)
u } ∣ u ∈ V)

GNNs are defined as a composition of 

๏ AGGREGATE functions and 

๏ READOUT functions

GNNs are at most as powerful as a Weisfeiler-Lehman graph isomorphism test. 

Xu, K. et al., How powerful are graph neural networks? In International Conference on Learning Representations, 2019.



WL-Test: on Spatial GNNs
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Example GNNs that are LESS powerful than WL test: GCN, GraphSage

Xu, K. et al., How powerful are graph neural networks? In International Conference on Learning Representations, 2019.

This upper bound is achieved if AGGREGATE and READOUT are Injective Multiset Functions

h(k)
u = AGGREGATE(k) ({(h (k−1)

v , h(k−1)
u )} ∣ v ∈ 𝒩(u))

hG = READOUT ({h(K)
u } ∣ u ∈ V)

GNNs are at most as powerful as a Weisfeiler-Lehman graph isomorphism test. 

Every possible output has at most 
one associated input 

h (k)
v = ReLU (W ⋅ MEAN {h(k−1)

u , ∀u ∈ 𝒩(v) ∪ {v}}) .

GCN has mean AGGREGATE, so it 
is not an injective function. As a 

result, it is less powerful. *



Spectral GNNs and Isomorphism Test
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AGGREGATE + READOUT Isomorphism Test

Spectral Filters Isomorphism Test

Spatial GNNs

Spectral GNNs

Wang, X et al.,. How powerful are spectral graph neural networks. International Conference on Machine Learning. PMLR, 2022.
Xu, K., et al., How powerful are graph neural networks? In International Conference on Learning Representations, 2019.

What is the connection? 



Spectral GNNs and Isomorphism Test

18Wang, X et al.,. How powerful are spectral graph neural networks. International Conference on Machine Learning. PMLR, 2022.
Xu, K., et al., How powerful are graph neural networks? In International Conference on Learning Representations, 2019.
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AGGREGATE + READOUT Isomorphism Test

Spectral Filters Isomorphism Test

Spatial GNNs

Spectral GNNs

Doesn’t work on GNNs with Continuous features. 
WL-test (1-WL test) is not perfect. 

Spectral filters are universal approximators when satisfying two conditions. 
The analysis is limited to Spectral GNNs without nonlinearity. 



Comparison

๏ Existing surveys and theoretical analyses focus on either the 
spatial or the spectral GNNs, not all of them. 

๏ Here is the framework we will introduce later 
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Spatial Domain A0

propagation  
directions A3

2

1

1

2

2

1

B0 Spectral Domain

-1

1 2 3 4

Q(   )

approximation  
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1 2 3 4

0

1

2

3

order of  
approximationB2

1 2 3 4
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aggregationB1

Connectivity

2

1

1

2

2

1

A2order of 
connectivity A1local  

aggregation

k→1

k←1←PP
Q

→PP
Q

1 2 3 4

Eigenvalues

1→k

1←k

P
QP→

P← P
Q

A3 A2 A1 B1 B2 B3
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๏ First Half (1 hour 15 min)

- Background: unified frameworks for GNN (35 min)

- Preliminary: graph convolutions (40 min)
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ConvNet 
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P1 P2 P3

P4

P7 P8 P9

P6P5

W1 W2 W3

W4

W7 W8 W9

W6W5

Input 1(pixels)

Weight Mat (3*3)

̂P5 =
9

∑
i=1

Pi ⋅ Wi

Each pixel has fixed number of neighbors

Convolution

input 2
input 3
input 4

Credit: Prof. Dr. Johannes Maucher



Challenge for ConvNet on Graphs
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non-Euclidean

?

? A

B

Convolution ?

C

A B C

W

dynamic # of neighbors

?fixed # of weights

Traditional Conv Dose NOT work



What is Graph Convolution

๏ Convolution Theorem

- Fourier transform of the convolution of two functions is equal to the 
point-wise multiplication of their Fourier transforms. 

23

f * g = ℱ−1{ℱ{f} ⋅ ℱ{g}}

ℱ{f * g} = ℱ{f} ⋅ ℱ{g}

Space convolution = frequency multiplication

We can do the convolution in the spectral domain, such that avoiding the issues.



Convolution on Graph Data
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Spectral Domain Spatial DomainSpatial Domain

Graph
Signal

Graph 
Structure

Convolution

new node representation

graph Fourier 
transform inverse 

w

wg = g(λ)

Chung, Fan RK. Spectral graph theory. Vol. 92. American Mathematical Soc., 1997.

f * g = ℱ−1{ℱ{f} ⋅ ℱ{g}}



Convolution on Graph Data
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Convolution theorem: f * g = ℱ−1{ℱ{f} ⋅ ℱ{g}}

What is the Fourier Transform on Graphs?

What is the Inverse Fourier Transform on Graphs?



Spectral Analysis
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Time

Fre
que

ncy
 Do

main

= + + +  …

credit: giphy

w1 ⋅ w2 ⋅ w3 ⋅w0 ⋅ +

https://giphy.com/gifs/animation-transform-functions-B95LXCXM5LLfa


Spectral Analysis for Graph
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Graph Structure

w1 ⋅ w2 ⋅ w3 ⋅w0 ⋅

eigen-vector 0 eigen-vector 1 eigen-vector 2 eigen-vector 3

Graph Signal (e.g.,Traffic Speed)

wspeed
1 ⋅ wspeed

2 ⋅ wspeed
3 ⋅wspeed

0 ⋅

Graph Fourier Transform (Spectral Decomposition)

Minnesota Road Networks



Convolution on Graph Data

๏ Convolution theorem: 

๏ What is each of the components on a graph? 

๏ Fourier transform of :  

๏ Inverse Fourier transform of :   

๏ Now, what is , and  ? 

๏

๏ Finally, 

f * g = ℱ−1{ℱ{f} ⋅ ℱ{g}}

f UTf
f Uf

U UT

L = I − D− 1
2 AD− 1

2 = UΛUT

g * X = Ug(Λ)UT X

28



Convolution on Graph Data
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1

3

graph Fourier transform

Inverse graph Fourier transform

2 convolution (theorem)

Graph Structure Graph Signal (e.g.,Traffic Speed)

L = UΛU⊤Get base by
is graph Laplacian matrixL

Chung, Fan RK. Spectral graph theory. Vol. 92. American Mathematical Soc., 1997.

gθ * x = Ugθ(Λ)U⊤x



Convolution on Graph Data
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gθ * x = Ugθ(Λ)U⊤x L = I − D− 1
2 AD− 1

2 = UΛUT

How to design  ? gθ

gθ(Λ) =
θ1

⋱
θn

This is the weight matrix/ convolution kernel / mask in CNN



Convolution on Graph Data
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gθ * x = U
θ1

⋱
θn

(Λ)U⊤x

It works, but it’s expensive to calculate.  
We can approximate it with the polynomial of  Λ



Convolution on Graph Data
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If constraint  is polynomialgθ

= gθ(L) ⋅ fgθ * f = UgθU⊤f gθ = g(θ) = 2 − θ

= gθ(L) ⋅ f

= (2 ⋅ I − L) ⋅ f

= (2 ⋅ I − (I − A)) ⋅ f
= (I + A) ⋅ f
= f + A ⋅ f

are normalizedA Land
1-order polynomial without weights

Now we have GCN

Kipf, T. N., & Welling, M. (2017).  Semi-supervised classification with graph convolutional networks. ICLR,



Convolution on Graph Data
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If constraint  is polynomialgθ

Kipf, T. N., & Welling, M. (2017).  Semi-supervised classification with graph convolutional networks. ICLR,

Self Average of neighbors
We reach here with the spectral method, but it 

also makes sense in spatial domain

gθ = g(θ) = 2 − θ

are normalizedA Land
1-order polynomial without weights

= gθ(L) ⋅ fgθ * f = UgθU⊤f

= gθ(L) ⋅ f

= (2 ⋅ I − L) ⋅ f

= (2 ⋅ I − (I − A)) ⋅ f
= (I + A) ⋅ f
= f + A ⋅ f



A

Convolution on Graph Data
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A B C

W

dynamic # of neighbors

?fixed # of weights

Traditional Conv Dose NOT work

A +=
5

+ ++ +



A

Convolution on Graph Data
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A B C

W

dynamic # of neighbors

?fixed # of weights

A +=
5

+ ++ +

B =
1Traditional Conv Dose NOT work



A

Convolution on Graph Data
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A B C

W

dynamic # of neighbors

?fixed # of weights

A +=
5

+ ++ +

B +=
1

C +=
4

+ ++

Traditional Conv Dose NOT work



A

Convolution on Graph Data
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A B C

W

dynamic # of neighbors

?fixed # of weights

A

B

C

∈ ℝnode

∈ ℝnode

∈ ℝnode

Traditional Conv Dose NOT work



A

Convolution on Graph Data
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A B C

W

dynamic # of neighbors

?fixed # of weights

A

B

C

∈ ℝnode

∈ ℝnode

∈ ℝnode

Unified  
Dimension

GCN works!

Traditional Conv Dose NOT work



Convolution on Graph Data
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If constraint  is polynomial, rational or exp functiongθ

Kipf, T. N., & Welling, M. (2017).  Semi-supervised classification with graph convolutional networks. ICLR,

gθ * f = UgθU⊤f

A +=
5

+ ++ +

B +=
1

C +=
4

+ ++

= f + A ⋅ f

Self Average of neighbors



Convolution on Graph Data
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If constraint  is polynomial or rational functiongθ

gθ * x = UgθU⊤x

A +=
5

+ ++ +

B +=
1

C +=
4

+ ++

= x + A ⋅ x

Self Average of neighbors

How about  in other GNNs?gθ



Convolution on Graph Data
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If constraint  is polynomial or rational functiongθ

gθ * x = UgθU⊤x

A +=
5

+ ++ +

B +=
1

C +=
4

+ ++

= x + A ⋅ x

Self Average of neighbors

How about  in other GNNs?gθ

What does the space and frequency look like in 
graph domain?



Agenda
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๏ First Half (1 hour 15 min)

- Background: unified frameworks for GNN (35 min)

- Preliminary: graph convolutions (40 min)

- BREAK (15min)

๏ Second Half (1 hour)

- Introduction: a new unified framework (40 min)

- Future directions (20min) 

- Q&A (15min)



Spatial & Spectral Methods

๏ Spatial Methods

43

g(Λ, X) = Ugθ(Λ)UT X

g(A, X) = gθ(A)X

๏ Spectral Methods

Function of graph (matrix)

Function of eigenvalue of (graph matrix)



Normalization
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Normalized Unnormalizedvs

Chen, Zhiqian, et al. "Bridging the gap between spatial and spectral domains: A unified framework for graph neural networks." ACM Computing Surveys 2023

“Mean” “Sum”



Normalization

๏ Spatial reason

- Suppose a two-cluster partitioning for A and B

- Ratio Cut: 𝑐𝑢𝑡(𝐴,𝐵)( )

• Use # node to cluster graph

- Normalized Cut: 𝑐𝑢𝑡(𝐴,𝐵)( )

• Use # link to cluster graph

1
|A |

+
1

|B |

1
Vol(A)

+
1

Vol(B)

45Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17 (2007): 395-416.

Normalized 

Unnormalized



Normalization

๏ Spectral reason

- Eigenvalue 

• max degree of the graph

- Eigenvalue  

• random walk or symmetric normalization

∈ [0,λmax]

λmax <

∈ [0,2]

46Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17 (2007): 395-416.

Normalized 

Unnormalized



In form of

Case Study 1: GCN
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= + +

= + +

+

Z(     ) h(     ) h(     )h(     )h(     ) +

Attribute Propagation

Z, h: representations of nodes

Thomas N. Kipf et al. (2017)GCN

Kipf, T. N., & Welling, M. (2017).  Semi-supervised classification with graph convolutional networks. ICLR,

Z = D− 1
2 ÂD− 1

2 X = D− 1
2 (I + A)D− 1

2 X = (I + Ã)X

gθ(A)X



Case Study 1: GCN
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1 2 3 4
1 2

1(    ) 2(    )

3

3(    )

Thomas N. Kipf et al. (2017)GCN

Z = D− 1
2 (A + I)D− 1

2 X = D− 1
2 (D − L + I)D− 1

2 X = U(2 − Λ)U⊤X

In form of Ugθ(Λ)UT X



Case Study 1: GCN
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Thomas N. Kipf et al. (2016)GCN

Z = D− 1
2 (I + A)D− 1

2 X = (I + Ã)X

Z = D− 1
2 (I + A)D− 1

2 X = U(2 − Λ)U⊤X

Average neighbors

Linear function

Spatial

Spectral



Spatial-based GNN: Linear
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= + +

= + +

+

Z(     ) h(     ) h(     )h(     )h(     ) +

Attribute Propagation
Thomas N. Kipf et al. (2016)

Z = D̂− 1
2 ÂD̂− 1

2 X = D̂− 1
2 (I + A)D̂− 1

2 X = (I + Ã)X
GCN

Hamilton, Will, Zhitao Ying, and Jure Leskovec. "Inductive representation learning on large graphs." Advances in neural information processing systems 30 (2017).

Linear

Z, h: representations of nodes

g(A)XFunction of graph matrix

Z = D− 1
2 (I + A)D− 1

2 X = (I + Ã)X

w/ mean aggregator

GraphSAGE



Spatial-based GNN: Linear
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= + +

= + +

+

Z(     ) h(     ) h(     )h(     )h(     ) +

Attribute Propagation
Thomas N. Kipf et al. (2016)

Z = D̂− 1
2 ÂD̂− 1

2 X = D̂− 1
2 (I + A)D̂− 1

2 X = (I + Ã)X

Z = D− 1
2 (I + A)D− 1

2 X = (I + Ã)X

Z = (1 + ϵ) ⋅ h(v) + ∑uj∈𝒩(vi) h(uj) = [(1+ϵ)I + A]X

Will Hamilton et al. (2017)

GCN

GraphSAGE

GIN

Linear

Z, h: representations of nodes

g(A)XFunction of graph matrix

Xu, Keyulu, et al. "How Powerful are Graph Neural Networks?." International Conference on Learning Representations. 2018.

Control hyperparameter



Spatial-based GNN: Linear
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= + +

= + +

+

Z(     ) h(     ) h(     )h(     )h(     ) +

Attribute Propagation
Thomas N. Kipf et al. (2016)

Z = D̂− 1
2 ÂD̂− 1

2 X = D̂− 1
2 (I + A)D̂− 1

2 X = (I + Ã)X

Z = D− 1
2 (I + A)D− 1

2 X = (I + Ã)X

Z = (1 + ϵ) ⋅ h(v) + ∑uj∈𝒩(vi) h(uj) = [(1+ϵ)I + A]X

Will Hamilton et al. (2017)

GCN

GraphSAGE

GIN

Linear

Z, h: representations of nodes

g(A)XFunction of graph matrix

Linear

1 2 3 4
1 2

1(    ) 2(    )

3

3(    )

Thomas N. Kipf et al. (2016)

Z = ÃX = D− 1
2 (A + I)D− 1

2 X = D− 1
2 (D − L + I)D− 1

2 X = (I − L + I)D− 1
2 X = U(2 − Λ)U⊤X

Z = D− 1
2 (I + A)D− 1

2 X = (I + Ã)X = (2I − L̃)X = U(2 − Λ)U⊤X

Z = D− 1
2 [(1 + ϵ)I + A]D− 1

2 X = D− 1
2 [(2 + ϵ)I − L̃]D− 1

2 X = U(2 + ϵ − Λ)U⊤X

Will Hamilton et al. (2017)

Xukeyu Lu et al. (2019)

GCN

GraphSAGE

GIN

Ugθ(Λ)UT XFunction of eigenvalue



Case Study 2: DeepWalk

๏ Draw a group of random paths from a graph
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๏ Let the window size (path length) of skip-gram be 2𝑡+1and the current 
node is the (t+1)-th

Img credit: DOI: (10.1002/sim.9346) 
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Z =
1

t + 1 (I + Ã + Ã2 + … + Ãt) X =
1

t + 1
P(Ã)X

Z = ∑K−1
k=0 θkTk(L̃)X = [θ̃0I + θ̃1(I − Ã) + θ̃2(I − Ã)2 + …] X = (ϕI + ∑k

i=1 ψiÃi) X = P(Ã)X

ChebyNet Defferrard, Michael et al. (2016)

Polynomial

2

1

1

2

2

1

Chebyshev polynomial (1st kind) of L

Defferrard, et al., "Convolutional neural networks on graphs with fast localized spectral filtering." Advances in neural information processing systems 29 (2016).

g(A)XFunction of graph matrix
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Z =
1

t + 1 (I + Ã + Ã2 + … + Ãt) X =
1

t + 1
P(Ã)X

Z = ∑K−1
k=0 θkTk(L̃)X = [θ̃0I + θ̃1(I − Ã) + θ̃2(I − Ã)2 + …] X = (ϕI + ∑k

i=1 ψiÃi) X = P(Ã)X

ChebyNet Defferrard, Michael et al. (2016)

Z = ( 1
p ⋅ I + Ã + 1

q (Ã2 − Ã)) X = [ 1
p I + (1 − 1

q ) Ã + 1
q Ã2] X = P(Ã)X

Node2Vec Aditya Grover et al. (2016)

Polynomial

2

1

1

2

2

1

g(A)XFunction of graph matrix
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t + 1 (I + Ã + Ã2 + … + Ãt) X =
1

t + 1
P(Ã)X

Z = ∑K−1
k=0 θkTk(L̃)X = [θ̃0I + θ̃1(I − Ã) + θ̃2(I − Ã)2 + …] X = (ϕI + ∑k

i=1 ψiÃi) X = P(Ã)X

ChebyNet Defferrard, Michael et al. (2016)

Z = ( 1
p ⋅ I + Ã + 1

q (Ã2 − Ã)) X = [ 1
p I + (1 − 1

q ) Ã + 1
q Ã2] X = P(Ã)X

Node2Vec Aditya Grover et al. (2016)

Polynomial

2

1

1

2

2

1

Polynomial
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1P(    ) 2P(    )
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3P(    )

DeepWalk Bryan Perozzi et al. (2014)

Z = 1
t + 1 (I + (I − L̃) + (I − L̃)2 + … + (I − L̃)t) X = U (θ0 + θ1Λ + θ2Λ2 + … + θtΛt) U⊤X

Z = ∑K−1
k=0 θkTk(L̃)X = U (θ̃0 ⋅ 1 + θ̃1Λ + θ̃2Λ2 + …) U⊤X

ChebyNet Defferrard, Michael et al. (2016)

Z = [(1 + 1
p ) I − (1 + 1

q ) L̃ + 1
q L̃2] X = U [(1 + 1

p ) − (1 + 1
q ) Λ̃ + 1

q Λ̃2] U⊤X

Node2Vec Aditya Grover et al. (2016)

g(A)XFunction of graph matrix

Ugθ(Λ)UT XFunction of eigenvalue
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Attribute Propagation

Linear
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2

1

1

2

2

1

Z, h: representations of nodes

g(A)XFunction of graph matrix

only consider the direct neighbors

consider the higher-order neighbors



Linear v.s. Polynomial 
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Linear

Polynomial

1 2 3 4
1 2

1(    ) 2(    )

3

3(    )

1 2 3 4
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1P(    ) 2P(    )
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3P(    )

Thomas N. Kipf et al. (2016)

Z = ÃX = D− 1
2 (A + I)D− 1

2 X = D− 1
2 (D − L + I)D− 1

2 X = (I − L + I)D− 1
2 X = U(2 − Λ)U⊤X

Z = D− 1
2 (I + A)D− 1

2 X = (I + Ã)X = (2I − L̃)X = U(2 − Λ)U⊤X

Z = D− 1
2 [(1 + ϵ)I + A]D− 1

2 X = D− 1
2 [(2 + ϵ)I − L̃]D− 1

2 X = U(2 + ϵ − Λ)U⊤X

Will Hamilton et al. (2017)

Xukeyu Lu et al. (2019)

GCN

GraphSAGE

GIN

DeepWalk Bryan Perozzi et al. (2014)

Z = 1
t + 1 (I + (I − L̃) + (I − L̃)2 + … + (I − L̃)t) X = U (θ0 + θ1Λ + θ2Λ2 + … + θtΛt) U⊤X

Z = ∑K−1
k=0 θkTk(L̃)X = U (θ̃0 ⋅ 1 + θ̃1Λ + θ̃2Λ2 + …) U⊤X

ChebyNet Defferrard, Michael et al. (2016)

Z = [(1 + 1
p ) I − (1 + 1

q ) L̃ + 1
q L̃2] X = U [(1 + 1

p ) − (1 + 1
q ) Λ̃ + 1

q Λ̃2] U⊤X

Node2Vec Aditya Grover et al. (2016)

Ugθ(Λ)UT XFunction of eigenvalue
“spectral response functions”
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y = 3x + 2

y = x5 − 3x4 + 2x3 − 0.3x2 + x + 1

Ugθ(Λ)UT XFunction of eigenvalue
“spectral response functions”



Linear v.s. Polynomial
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Spatial Domain A0 B0 Spectral Domain
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Connectivity
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A2order of 
connectivity A1local  
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k→1

k←1
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Eigenvalues

1→k

1←k

A2 A1 B1 B2

Linear

Polynomial



Beyond Polynomial: Rational Model
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y = 3x + 2 y = x5 − 3x4 + 2x3 − 0.3x2 + x + 1

Defferrard, et al., "Convolutional neural networks on graphs with fast localized spectral filtering." Advances in neural information processing systems 29 (2016).

ChebNetGCN What if non-smooth function

Linear Polynomial



Beyond Polynomial: Rational Model
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Polynomial approximation

simple form, well known properties
computationally easy to use

Cheaper 
Less accurate

More expensive
More accurate

moderately simple form, not well-known properties
moderately easy to handle computationally

notorious for oscillations between exact-fit value
only high degree can model complicated structure
poor interpolatory/extrapolatory/asymptotic properties

excellent for oscillations between exact-fit value
model complicated structure with a fairly low degree
excellent interpolatory/extrapolatory/asymptotic properties

Rational approximation

Trefethen, Lloyd N. Approximation theory and approximation practice, extended edition. Society for Industrial and Applied Mathematics, 2019.



Beyond Polynomial: Rational Model

63

func: target function;       
poly: polynomial approximation        
rat: rational approximation

Telgarsky, M. (2017, July). Neural networks and rational functions. In International Conference on Machine Learning 



Beyond Polynomial: Rational Model
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Rational Neural Network: iteratively close to the target
[Screenshots in every 100 epochs]

Boullé, N., Nakatsukasa, Y., & Townsend, A. (2020). Rational neural networks. Advances in neural information processing systems

Zhiqian Chen, et al. Rational Neural Networks for Approximating Graph Convolution Operator on Jump Discontinuities, ICDM 2018



Polynomial v.s. Rational
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Polynomial

Rational

graph Laplacian

node attributes

Thomas N. Kipf et al. (2016)

Z. Chen et al. (2018)
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Polynomial

Label propagation

Rational

Label propagation
Reverse Label propagation

2 18

10 10
Push

Pull

5 15

Over-smooth issue

Polynomial v.s. Rational
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Polynomial

Label propagation

Rational

Reverse Label propagation

Polynomial v.s. Rational
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Polynomial

Label propagation

Rational

Reverse Label propagation

Polynomial v.s. Rational

gθ * f = UgθU⊤f = f + A ⋅ f

Self Average of neighbors

f + A ⋅ f

Rational

Polynomial
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Polynomial

Label propagation

Rational

Reverse Label propagation

Polynomial v.s. Rational

f + A ⋅ f
Add the original f at each iteration 

gθ * f = UgθU⊤f = f + A ⋅ f

Self Average of neighbors

Add the last f at each iteration 

Rational

Polynomial



Beyond Polynomial: Rational Model
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Personalized Page Rank  
(information retrieval)

πppr (ix) = (1 − α) ̂̃Aπppr (ix) + αix

Johannes Klicpera et al. (2018)

(1 − α) α

α
1 − (1 − α)λ



Beyond Polynomial: Rational Model
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ARMA 
(time series)

X(t+1) = aMX(t) + bX

Personalized Page Rank  
(information retrieval)

πppr (ix) = (1 − α) ̂̃Aπppr (ix) + αix

next Push Pull= +

2

1

1

2

2

1

Filippo Maria Bianchi et al. (2018)Johannes Klicpera et al. (2018)

α β

(1 − α) α a b

One iteration

K iterations K-order rational function→

Bianchi, Filippo Maria, et al. "Graph neural networks with convolutional arma filters." IEEE transactions on pattern analysis and machine intelligence 44.7 (2021): 3496-3507.



Why Rational, and Why Not?

๏ Yes

- Non-smooth functions (Spectral) 

- Avoid over-smoothing (Spatial)

- Approximation theory

• rational is better than polynomial  when order  5

๏ No

- Computational Complexity: Matrix Inversion

≥

72

Physical meaning of non-smooth func in spatial?

Imply 5 iterations/layers

𝒪(n3)



Spatial-based GNN
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Thomas N. Kipf et al. (2016)

Z = D̂− 1
2 ÂD̂− 1

2 X = D̂− 1
2 (I + A)D̂− 1

2 X = (I + Ã)X

Z = D− 1
2 (I + A)D− 1

2 X = (I + Ã)X

Z = (1 + ϵ) ⋅ h(v) + ∑uj∈𝒩(vi) h(uj) = [(1 + ϵ)I + A]X

Will Hamilton et al. (2017)

Xukeyu Lu et al. (2019)

GCN

GraphSAGE

GIN

DeepWalk Bryan Perozzi et al. (2014)

Z =
1

t + 1 (I + Ã + Ã2 + … + Ãt) X =
1

t + 1
P(Ã)X

Z = ∑K−1
k=0 θkTk(L̃)X = [θ̃0I + θ̃1(I − Ã) + θ̃2(I − Ã)2 + …] X = (ϕI + ∑k

i=1 ψiÃi) X = P(Ã)X

ChebyNet Defferrard, Michael et al. (2016)

Z = ( 1
p ⋅ I + Ã + 1

q (Ã2 − Ã)) X = [ 1
p I + (1 − 1

q ) Ã + 1
q Ã2] X = P(Ã)X

Node2Vec Aditya Grover et al. (2016)

Linear

Polynomial

Rational ARMA Filter
Z = b

I − aÃ
X

Johannes Klicpera et al. (2018)

Filippo Maria Bianchi et al. (2018)

Qimai Li et al. (2019)Auto Regressive Filter

Z = (I + αL̃)−1X =
I

I + α(I − Ã)
X

Personalized PageRank
Z =

α
I − (1 − α)Ã

X

2

1

1

2

2

1

Z, h: representations of nodes

g(A)XFunction of graph matrix



Spectral-based GNN
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2 X = D− 1
2 (D − L + I)D− 1

2 X = (I − L + I)D− 1
2 X = U(2 − Λ)U⊤X

Z = D− 1
2 (I + A)D− 1

2 X = (I + Ã)X = (2I − L̃)X = U(2 − Λ)U⊤X

Z = D− 1
2 [(1 + ϵ)I + A]D− 1

2 X = D− 1
2 [(2 + ϵ)I − L̃]D− 1

2 X = U(2 + ϵ − Λ)U⊤X

Will Hamilton et al. (2017)

Xukeyu Lu et al. (2019)

GCN

GraphSAGE

GIN

DeepWalk Bryan Perozzi et al. (2014)

Z = 1
t + 1 (I + (I − L̃) + (I − L̃)2 + … + (I − L̃)t) X = U (θ0 + θ1Λ + θ2Λ2 + … + θtΛt) U⊤X

Z = ∑K−1
k=0 θkTk(L̃)X = U (θ̃0 ⋅ 1 + θ̃1Λ + θ̃2Λ2 + …) U⊤X

ChebyNet Defferrard, Michael et al. (2016)

Z = [(1 + 1
p ) I − (1 + 1

q ) L̃ + 1
q L̃2] X = U [(1 + 1

p ) − (1 + 1
q ) Λ̃ + 1

q Λ̃2] U⊤X

Node2Vec Aditya Grover et al. (2016)

ARMA Filter
Z = b

1 − a(I − L̃)
X = U b

(1 − a)I + aΛ U⊤X

Johannes Klicpera et al. (2018)

Filippo Maria Bianchi et al. (2018)

Qimai Li et al. (2019)Auto Regressive Filter
Z = (I + αL̃)−1X = U 1

1 + α(1 − Λ) U⊤X

Personalized PageRank
Z = α

I − (1 − α)(I − L̃)
X = U α

αI + (1 − α)Λ U⊤X

Ugθ(Λ)UT XFunction of eigenvalue
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Word2Vec                                     

Spatial v.s. Spectral

Tomas Mikolvet et al. (2013) Omer Levy et al. (2014)

Shifted PMI (co-occurrence matrix)

Matrix Factorization, O( )n3

I am similar to neighbors Co-Occurrence matrix decomposition 

Spatial, local Spectral, global

W2V as Implicit MF

77Levy, Omer, and Yoav Goldberg. "Neural word embedding as implicit matrix factorization." Advances in neural information processing systems 27 (2014).
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Spatial v.s. Spectral

Uri Shaham et al. (2018)

Spectral Decomposition

Spatial, local Spectral, global

SpectralNet Spectral Clustering

Shaham, Uri, et al. "Spectralnet: Spectral clustering using deep neural networks." ICLR (2018).



Spatial v.s. Spectral
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Agenda
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๏ First Half (1 hour 15 min)

- Background: unified frameworks for GNN (35 min)

- Preliminary: graph convolutions (40 min)

- BREAK (15min)

๏ Second Half (1 hour)

- Introduction: a new unified framework (40 min)

- Future directions (20min) 

- Q&A (15min)



Future Directions

๏ PDE

- Waves v.s. Diffusions is similar to Rational v.s. Polynomial

81Strauss, W. A. (2007). Partial differential equations: An introduction. John Wiley & Sons.

PolynomialRational



Future Directions

๏ Spectral graph beyond simple graph

- Signed

- Directed

- Higher-order (hypergraph, simplicial complex)

- etc

82Levie, Ron, et al. "Transferability of spectral graph convolutional neural networks." Journal of Machine Learning Research 22.272 (2021): 1-59.



Future Directions

๏ Hodge Laplacian

- GCN: 0st-order information propagate over 1nd-order connectivity

- xGCN: (x)st-order information propagate over (x+1)nd-order connectivity

83Grande, Vincent P., and Michael T. Schaub. "Disentangling the Spectral Properties of the Hodge Laplacian: not all small Eigenvalues are Equal." ICASSP 2024. IEEE, 2024.

Lk := Ldown 
k + Lup 

k
Lup

k := Bk+1B⊤
k+1

Ldown 
k := B⊤

k Bk
 is normal graph LaplacianL1



Future Directions

๏ Hodge decomposition 

- Decompose dynamics into 3 categories 

84Grande, Vincent P., and Michael T. Schaub. "Disentangling the Spectral Properties of the Hodge Laplacian: not all small Eigenvalues are Equal." ICASSP 2024. IEEE, 2024.



Future Directions

๏ Quantum Computing for Spectral Method

- Quantum algorithms such as the Quantum Phase Estimation (QPE) 
algorithm can be used to find the eigenvalues and eigenvectors of a 
matrix more efficiently than classical algorithms

85

- Classical Algorithm:  

- QPE:  with 
precision  

𝒪(n3)

𝒪((log(n))2/ϵ)
ϵ



Conclusion

๏ Connection between spectral and spatial domain

- Spatial: function of adjacency matrix

- Spectral: function of eigenvalues

๏ Linear, polynomial and rational function

- more power, more computation

๏ Computation

- Spatial method: iterative and cheap approximation

- Spectral method: one-step, expensive and exact

86



Thank You & Q/A

87

https://github.com/XGraph-Team/Spectral-Graph-Survey 

https://github.com/XGraph-Team/Spectral-Graph-Survey

