CVPR 24' Tutorial Unifying Spectral and Spatial Graph Neural Networks

Chen, Zhiqian Assistant Professor

Mississippi State University

Zhang, Lei Assistant Professor

Northern Illinois University

Northern Illinois University

Zhao, Liang Associate Professor

Emory University

Agenda

First Half (1 hour 15 min)

- Background: unified frameworks for GNN (35 min)
- Preliminary: graph convolutions (40 min)
- BREAK (15min)

Second Half (1 hour)

- Introduction: a new unified framework (40 min)
- Future directions (20min)
- Q&A (15min)

Agenda

First Half (1 hour 15 min)

- Background: unified frameworks for GNN (35 min)
- Preliminary: graph convolutions (40 min)
- BREAK (15min)
- Second Half (1 hour)
 - Introduction: a new unified framework (40 min)
 - Future directions (20min)
- Q&A (15min)

Graph is Pervasive

Graphs in Image Data: Scene Graph

BASE: a city street with many cars BASE+MGCN: a city street with many cars and buses SGAE: a busy highway filled with lots of traffic GT: there are many cars and buses on the busy highway

leo Captioning

Auto-encoding scene graphs for " Proceedings of the IEEE/CVF computer vision and pattern cognition. 2019.

Structured reasoning

nan, et al. "Vqa-gnn: Reasoning with nowledge via graph neural networks for n answering." Proceedings of the IEEE/ tional Conference on Computer Vision. 2023.

scene-graph

structured knowledge

concept-graph

Graph as Auxiliary: Knowledge graph for image classification

Graphs in neural network architecture

Xie, Saining, et al. "Exploring randomly wired neural networks for image recognition." ICCV 2019.

Graph topology and neural network architectures

Dudziak, Lukasz, et al. "Brp-nas: Prediction-based nas using gcns." Advances in Neural Information Processing Systems 33 (2020): 10480-10490.

Zhang, C., et al,. Graph hypernetworks for neural architecture search. ICLR 2019

Motivation: A Unified View

A large number of graph neural networks, with different mechanisms

. . .

Motivation: A Unified View

Motivation: A Unified View

A large number of graph neural networks, with different mechanisms Challenge no uniform theoretical framework to compare them This Tutorial Spatial Spectral Neighbor Frequency 0-Order of Order of 0-Neighbor Frequncy Reverse of Reverse of С Neighbor Frequncy -> generalization -> specialization O-O equivalence

Attempts to Unify GNNs

Compare GNNs with respect to their <u>expressive power</u> (ability to distinguish different graph structures)

WL-Test: on Spatial GNNs

GNNs are defined as a composition of

- AGGREGATE functions and
- READOUT functions

$$h_{u}^{(k)} = \operatorname{AGGREGATE}^{(k)} \left(\left\{ \left(h_{v}^{(k-1)}, h_{u}^{(k-1)} \right) \right\} \mid v \in \mathcal{N}(u) \right)$$
$$h_{G} = \operatorname{READOUT} \left(\left\{ h_{u}^{(K)} \right\} \mid u \in V \right)$$

GNNs are at most as powerful as a Weisfeiler-Lehman graph isomorphism test.

WL-Test: on Spatial GNNs

GNNs are at most as powerful as a Weisfeiler-Lehman graph isomorphism test.

$$h_{u}^{(k)} = \operatorname{AGGREGATE}^{(k)} \left(\left\{ \left(h_{v}^{(k-1)}, h_{u}^{(k-1)} \right) \right\} \mid v \in \mathcal{N}(u) \right)$$
$$h_{G} = \operatorname{READOUT} \left(\left\{ h_{u}^{(K)} \right\} \mid u \in V \right)$$

This upper bound is achieved if AGGREGATE and READOUT are Injective Multiset Functions

Example GNNs that are LESS powerful than WL test: GCN, GraphSage

Every possible output has at most one associated input

$$h_{v}^{(k)} = \operatorname{ReLU}\left(W \cdot \operatorname{MEAN}\left\{h_{u}^{(k-1)}, \forall u \in \mathcal{N}(v) \cup \{v\}\right\}\right)$$

GCN has mean AGGREGATE, so it is not an injective function. As a result, it is less powerful. *

Spectral GNNs and Isomorphism Test

Xu, K., et al., How powerful are graph neural networks? In International Conference on Learning Representations, 2019. *Wang, X et al., How powerful are spectral graph neural networks.* International Conference on Machine Learning. *PMLR, 2022.*

Spectral GNNs and Isomorphism Test

Xu, K., et al., How powerful are graph neural networks? In International Conference on Learning Representations, 2019. *Wang, X et al.,*. *How powerful are spectral graph neural networks.* International Conference on Machine Learning. PMLR, 2022.

Comparison

- Existing surveys and theoretical analyses focus on either the spatial or the spectral GNNs, not all of them.
- Itere is the framework we will introduce later

Agenda

First Half (1 hour 15 min)

- Background: unified frameworks for GNN (35 min)
- Preliminary: graph convolutions (40 min)
- BREAK (15min)
- Second Half (1 hour)
 - Introduction: a new unified framework (40 min)
 - Future directions (20min)
 - Q&A (15min)

ConvNet

21

Challenge for ConvNet on Graphs

What is Graph Convolution

Convolution Theorem

 Fourier transform of the convolution of two functions is equal to the point-wise multiplication of their Fourier transforms.

$$\mathscr{F}{f*g} = \mathscr{F}{f} \cdot \mathscr{F}{g}$$

Space convolution = frequency multiplication

$$f * g = \mathcal{F}^{-1}\{\mathcal{F}\{f\} \cdot \mathcal{F}\{g\}\}$$

We can do the convolution in the spectral domain, such that avoiding the issues.

Spectral Analysis

credit: <u>giphy</u>

$$= w_0 \cdot - + w_1 \cdot \wedge + w_2 \cdot \wedge + w_3 \cdot \wedge + \dots$$

Spectral Analysis for Graph

Graph Fourier Transform (Spectral Decomposition)

- Convolution theorem: $f * g = \mathcal{F}^{-1} \{ \mathcal{F} \{ f \} \cdot \mathcal{F} \{ g \} \}$
- What is each of the components on a graph?
- Fourier transform of $f: U^T f$
- Inverse Fourier transform of f: Uf
- Now, what is U, and U^T ?
- $L = I D^{-\frac{1}{2}}AD^{-\frac{1}{2}} = U\Lambda U^T$
- Finally, $g * X = Ug(\Lambda)U^T X$

$$g_{\theta} * x = U g_{\theta}(\Lambda) U^{\top} x$$
 $L = I - D^{-\frac{1}{2}} A D^{-\frac{1}{2}} = U \Lambda U^{T}$

How to design g_{θ} *?*

$$g_{\theta}(\Lambda) = \begin{pmatrix} \theta_1 & & \\ & \ddots & \\ & & \theta_n \end{pmatrix}$$

This is the weight matrix/ convolution kernel / mask in CNN

$$g_{\theta} * x = U \begin{pmatrix} \theta_{1} & & \\ & \ddots & \\ & & \theta_{n} \end{pmatrix} (\Lambda) U^{\mathsf{T}} x$$

It works, but it's expensive to calculate. We can approximate it with the polynomial of Λ

If constraint g_{θ} is polynomial

$$g_{\theta} * f = Ug_{\theta}U^{\mathsf{T}}f = g_{\theta}(L) \cdot f$$

$$= g_{\theta}(L) \cdot f$$

$$= (2 \cdot I - L) \cdot f$$

$$= (2 \cdot I - (I - A)) \cdot f$$

$$= (I + A) \cdot f$$

$$= f + A \cdot f$$
Now we have GCN

If constraint g_{θ} is polynomial

dynamic # of neighbors

dynamic # of neighbors

If constraint g_{θ} is polynomial, rational or exp function

$$\begin{aligned} & \text{Self Average of neighbors} \\ & g_\theta * f = U g_\theta U^{\mathsf{T}} f & = f + A \cdot f \end{aligned}$$

Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph convolutional networks. ICLR,

How about g_{θ} in other GNNs?

What does the space and frequency look like in graph domain?

Convolution theorem

 $f(x,y) * h(x,y) \Leftrightarrow F(u,v)H(u,v)$

Space convolution = frequency multiplication

Agenda

First Half (1 hour 15 min)

- Background: unified frameworks for GNN (35 min)
- Preliminary: graph convolutions (40 min)
- BREAK (15min)

Second Half (1 hour)

- Introduction: a new unified framework (40 min)
- Future directions (20min)
- Q&A (15min)

Spatial & Spectral Methods

Spatial Methods

$$g(A, X) = g_{\theta}(A)X$$

Function of **graph** (matrix)

• Spectral Methods $g(\Lambda, X) = Ug_{\theta}(\Lambda)U^T X$

Function of <u>eigenvalue</u> of (graph matrix)

Normalization

Notations	Descriptions
Α	Adjacency matrix
L	Graph Laplacian
$\tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}$	Adjacency with self loop
$\mathbf{D}^{-1}\mathbf{A}$	Random walk row normalized adjacency
AD^{-1}	Random walk column normalized adjacency
$D^{-1/2} A D^{-1/2}$	Symmetric normalized adjacency
$\tilde{\mathbf{D}}^{-1}\tilde{\mathbf{A}}$	Left renormalized adjacency, $\tilde{\mathbf{D}}_{ii} = \sum_{j} \tilde{\mathbf{A}}_{ij}$
$\tilde{\mathbf{A}}\tilde{\mathbf{D}}^{-1}$	Right renormalized
$\tilde{ extbf{D}}^{-1/2} ilde{ extbf{A}} ilde{ extbf{D}}^{-1/2}$	Symmetric renormalized

Normalization

- Spatial reason
 - Suppose a two-cluster partitioning for A and B

- Ratio Cut:
$$cut(A,B)(\frac{1}{|A|} + \frac{1}{|B|})$$

• Use # node to cluster graph
- Normalized Cut: $cut(A,B)(\frac{1}{Vol(A)} + \frac{1}{Vol(B)})$
• Use # link to cluster graph
Normalized

Normalization

Spectral reason

- Eigenvalue $\in [0, \lambda_{max}]$
 - λ_{max} < max degree of the graph

Unnormalized

Normalized

- Eigenvalue $\in [0,2]$
 - random walk or symmetric normalization

Case Study 1: GCN

$$\mathbf{Z} = \mathbf{D}^{-\frac{1}{2}} \hat{\mathbf{A}} \mathbf{D}^{-\frac{1}{2}} \mathbf{X} = \mathbf{D}^{-\frac{1}{2}} (\mathbf{I} + \mathbf{A}) \mathbf{D}^{-\frac{1}{2}} \mathbf{X} = (\mathbf{I} + \tilde{\mathbf{A}}) \mathbf{X}$$

Case Study 1: GCN

GCN Thomas N. Kipf et al. (2017)

$$\mathbf{Z} = \mathbf{D}^{-\frac{1}{2}} (\mathbf{A} + \mathbf{I}) \mathbf{D}^{-\frac{1}{2}} \mathbf{X} = \mathbf{D}^{-\frac{1}{2}} (\mathbf{D} - \mathbf{L} + \mathbf{I}) \mathbf{D}^{-\frac{1}{2}} \mathbf{X} = \mathbf{U} (2 - \Lambda) \mathbf{U}^{\mathsf{T}} \mathbf{X}$$

Case Study 1: GCN

GCN Thomas N. Kipf et al. (2016)

Spatial-based GNN: Linear

Spatial-based GNN: Linear

GIN

$$\mathbf{Z} = (1 + \epsilon) \cdot \mathbf{h}(v) + \sum_{u_j \in \mathcal{N}(v_i)} \mathbf{h}_{(u_j)} = \begin{bmatrix} (1 + \epsilon)\mathbf{I} + \mathbf{A} \end{bmatrix} \mathbf{X}$$

Control hyperparameter

Spatial-based GNN: Linear

Function of eigenvalue

$Ug_{\theta}(\Lambda)U^TX$

GCN Thomas N. Kipf et al. (2016)

 $\mathbf{Z} = \tilde{\mathbf{A}}\mathbf{X} = \mathbf{D}^{-\frac{1}{2}}(\mathbf{A} + \mathbf{I})\mathbf{D}^{-\frac{1}{2}}\mathbf{X} = \mathbf{D}^{-\frac{1}{2}}(\mathbf{D} - \mathbf{L} + \mathbf{I})\mathbf{D}^{-\frac{1}{2}}\mathbf{X} = (\mathbf{I} - \mathbf{L} + \mathbf{I})\mathbf{D}^{-\frac{1}{2}}\mathbf{X} = \mathbf{U}(2 - \Lambda)\mathbf{U}^{\mathsf{T}}\mathbf{X}$

GraphSAGE Will Hamilton et al. (2017)

$$Z = D^{-\frac{1}{2}}(I + A)D^{-\frac{1}{2}}X = (I + \tilde{A})X = (2I - \tilde{L})X = U(2 - \Lambda)U^{\top}X$$

GIN Xukeyu Lu et al. (2019) $\mathbf{Z} = \mathbf{D}^{-\frac{1}{2}} [(1+\epsilon)\mathbf{I} + \mathbf{A}] \mathbf{D}^{-\frac{1}{2}} \mathbf{X} = \mathbf{D}^{-\frac{1}{2}} [(2+\epsilon)\mathbf{I} - \tilde{\mathbf{L}}] \mathbf{D}^{-\frac{1}{2}} \mathbf{X} = \mathbf{U} (2+\epsilon-\Lambda) \mathbf{U}^{\mathsf{T}} \mathbf{X}$

Case Study 2: DeepWalk

• Draw a group of random paths from a graph

$$\tilde{\mathbf{A}} = \mathbf{D}^{-1} \mathbf{A}$$

 Let the window size (path length) of skip-gram be 2t+1 and the current node is the (t+1)-th

$$\mathbf{Z} = \frac{1}{t+1} (\mathbf{I} + \tilde{\mathbf{A}} + \tilde{\mathbf{A}}^2 + \dots + \tilde{\mathbf{A}}^t) \mathbf{X}$$

Spectral-based GNN: Polynomial

ChebyNet Defferrard, Michael et al. (2016)

$$\mathbf{Z} = \sum_{k=0}^{K-1} \theta_k T_k(\tilde{\mathbf{L}}) \mathbf{X} = \begin{bmatrix} \tilde{\theta}_0 \mathbf{I} + \tilde{\theta}_1 (\mathbf{I} - \tilde{\mathbf{A}}) + \tilde{\theta}_2 (\mathbf{I} - \tilde{\mathbf{A}})^2 + \dots \end{bmatrix} \mathbf{X} = \begin{pmatrix} \phi \mathbf{I} + \sum_{i=1}^k \psi_i \tilde{\mathbf{A}}^i \end{pmatrix} \mathbf{X} = \mathbf{P}(\tilde{\mathbf{A}}) \mathbf{X}$$

Chebyshev polynomial (1st kind) of L

Spectral-based GNN: Polynomial

Spectral-based GNN: Polynomial

Node2Vec Aditya Grover et al. (2016) $\mathbf{Z} = \left[\left(1 + \frac{1}{p} \right) \mathbf{I} - \left(1 + \frac{1}{q} \right) \tilde{\mathbf{L}} + \frac{1}{q} \tilde{\mathbf{L}}^2 \right] \mathbf{X} = \mathbf{U} \left[\left(1 + \frac{1}{p} \right) - \left(1 + \frac{1}{q} \right) \tilde{\boldsymbol{\Lambda}} + \frac{1}{q} \tilde{\boldsymbol{\Lambda}}^2 \right] \mathbf{U}^{\mathsf{T}} \mathbf{X}$

Function of graph matrix g(A)X

only consider the *direct* neighbors

Polynomial

consider the *higher-order* neighbors

Function of <u>eigenvalue</u> Ug

 $Ug_{\theta}(\Lambda)U^TX$

"spectral response functions"

GCN Thomas N. Kipf et al. (2016)

 $Z = \tilde{A}X = D^{-\frac{1}{2}}(A + I)D^{-\frac{1}{2}}X = D^{-\frac{1}{2}}(D - L + I)D^{-\frac{1}{2}}X = (I - L + I)D^{-\frac{1}{2}}X = U(2 - \Lambda)U^{T}X$ **GraphSAGE** Will Hamilton et al. (2017) $Z = D^{-\frac{1}{2}}(I + A)D^{-\frac{1}{2}}X = (I + \tilde{A})X = (2I - \tilde{L})X = U(2 - \Lambda)U^{T}X$ **GIN** Xukeyu Lu et al. (2019)

$$\mathbf{Z} = \mathbf{D}^{-\frac{1}{2}}[(1+\epsilon)\mathbf{I} + \mathbf{A}]\mathbf{D}^{-\frac{1}{2}}\mathbf{X} = \mathbf{D}^{-\frac{1}{2}}[(2+\epsilon)\mathbf{I} - \tilde{\mathbf{L}}]\mathbf{D}^{-\frac{1}{2}}\mathbf{X} = \mathbf{U}(2+\epsilon-\Lambda)\mathbf{U}^{\mathsf{T}}\mathbf{X}$$

DeepWalk Bryan Perozzi et al. (2014)

$$\mathbf{Z} = \frac{1}{t+1} \left(\mathbf{I} + (\mathbf{I} - \tilde{\mathbf{L}}) + (\mathbf{I} - \tilde{\mathbf{L}})^2 + \dots + (\mathbf{I} - \tilde{\mathbf{L}})^t \right) \mathbf{X} = \mathbf{U} \left(\theta_0 + \theta_1 \mathbf{\Lambda} + \theta_2 \mathbf{\Lambda}^2 + \dots + \theta_t \mathbf{\Lambda}^t \right) \mathbf{U}^{\mathsf{T}} \mathbf{X}$$

ChebyNet Defferrard, Michael et al. (2016) $\mathbf{Z} = \sum_{k=0}^{K-1} \theta_k T_k(\tilde{\mathbf{L}}) \mathbf{X} = \mathbf{U} \left(\tilde{\theta}_0 \cdot 1 + \tilde{\theta}_1 \Lambda + \tilde{\theta}_2 \Lambda^2 + \dots \right) \mathbf{U}^{\mathsf{T}} \mathbf{X}$

Node2Vec Aditya Grover et al. (2016)
$$\mathbf{Z} = \left[\left(1 + \frac{1}{p} \right) \mathbf{I} - \left(1 + \frac{1}{q} \right) \tilde{\mathbf{L}} + \frac{1}{q} \tilde{\mathbf{L}}^2 \right] \mathbf{X} = \mathbf{U} \left[\left(1 + \frac{1}{p} \right) - \left(1 + \frac{1}{q} \right) \tilde{\Lambda} + \frac{1}{q} \tilde{\Lambda}^2 \right] \mathbf{U}^{\mathsf{T}} \mathbf{X}$$

58

 $y = x^5 - 3x^4 + 2x^3 - 0.3x^2 + x + 1$

Polynomial approximation

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0$

Cheaper Less accurate

simple form, well known properties computationally easy to use		
notorious for oscillations between exact-fit value only high degree can model complicated structure		
poor interpolatory/extrapolatory/asymptotic properties		

Rational approximation

 $f(x) = \frac{p(x)}{q(x)}$

More expensive More accurate

func: target function; **poly:** polynomial approximation **rat:** rational approximation

Boullé, N., Nakatsukasa, Y., & Townsend, A. (2020). Rational neural networks. Advances in neural information processing systems

Zhiqian Chen, et al. Rational Neural Networks for Approximating Graph Convolution Operator on Jump Discontinuities, ICDM 2018

FIG. 6. Left: Residual Learning x' = F(x) + x; Right: Rational Aggregation: x' = F(x) + x

Use personalized PageRank matrix Π_{ppr} to propagate further while retaining information about root node, adjust via teleport probability α :

$$\Pi_{\text{ppr}} = \alpha \left(I_n - (1 - \alpha) \hat{A} \right)^{-1}$$

$$\frac{\alpha}{1 - (1 - \alpha)\lambda}$$

71

Why Rational, and Why Not?

Yes

- Non-smooth functions (Spectral)
- Avoid over-smoothing (Spatial)
- Approximation theory
 - rational is better than polynomial when order ≥ 5

 $\mathcal{O}(n^3)$

Imply 5 iterations/layers

No

- Computational Complexity: Matrix Inversion

Physical meaning of non-smooth func in spatial?
Spatial-based GNN

Spectral-based GNN

Rational v.s. Polynomial

The Unified Framework

Spatial v.s. Spectral

Spatial v.s. Spectral

Complexity	Spatial	Spectral
Space	Only involves local neighbors each time	Matrix factorization takes more
Time	Many iterations, trade-off between #iteration vs convergence	One-time expensive matrix factorization

Shaham, Uri, et al. "Spectralnet: Spectral clustering using deep neural networks." ICLR (2018).

Spatial v.s. Spectral

	Methodology	Computation	Space Complexity	Stability
Spectral	Global	One-step	High	Exact
Spatial	Local	Iterative	Low	Approximate

Agenda

First Half (1 hour 15 min)

- Background: unified frameworks for GNN (35 min)
- Preliminary: graph convolutions (40 min)
- BREAK (15min)

Second Half (1 hour)

- Introduction: a new unified framework (40 min)
- Future directions (20min)
- Q&A (15min)

• PDE

- Waves v.s. Diffusions is similar to Rational v.s. Polynomial

Property		Waves	Diffusions	
(i)	Speed of propagation?	Finite $(\leq c)$	Infinite	
(ii)	Singularities for $t > 0$?	Transported along characteristics (speed = c)	Lost immediately	
(iii)	Well-posed for $t > 0$?	Yes	Yes (at least for bounded solutions)	
(iv)	Well-posed for $t < 0$?	Yes	No	
(v)	Maximum principle	No	Yes	
(vi)	Behavior as $t \to +\infty$?	Energy is constant so does not decay	Decays to zero (if ϕ integrable)	
(vii)	Information	Transported	Lost gradually	

COMPARISON OF WAVES AND DIFFUSIONS 2.5

Strauss, W. A. (2007). Partial differential equations: An introduction. John Wiley & Sons.

- Spectral graph beyond simple graph
 - Signed
 - Directed
 - Higher-order (hypergraph, simplicial complex)
 - etc

Hodge Laplacian

$$L_k := L_k^{\operatorname{down}} + L_k^{\operatorname{up}} \qquad \qquad L_k^{\operatorname{down}} := B_k^{\top} B_k$$
$$L_k^{\operatorname{up}} := B_{k+1} B_{k+1}^{\top}$$

 L_1 is normal graph Laplacian

- GCN: 0st-order information propagate over 1nd-order connectivity

Function of graph matrix

g(A)X

- xGCN: (x)st-order information propagate over (x+1)nd-order connectivity

• Hodge decomposition

- Decompose dynamics into 3 categories

- Quantum Computing for Spectral Method
 - Quantum algorithms such as the Quantum Phase Estimation (QPE) algorithm can be used to find the eigenvalues and eigenvectors of a matrix more efficiently than classical algorithms

- Classical Algorithm: $\mathcal{O}(n^3)$

- QPE: $O((log(n))^2/\epsilon)$ with precision ϵ

Conclusion

- Onnection between spectral and spatial domain
 - Spatial: function of adjacency matrix
 - Spectral: function of eigenvalues
- Inear, polynomial and rational function
 - more power, more computation
- Computation
 - Spatial method: iterative and cheap approximation
 - Spectral method: one-step, expensive and exact

Thank You & Q/A

Awesome Spectral Graph Neural Networks

PRs Welcome 🗀 awesome

Contents

- Survey Papers
- Milestone Papers
- Spatial and Spectral Views
- Twin Papers
- Applications
- <u>Code</u>
- <u>Citation</u>

https://github.com/XGraph-Team/Spectral-Graph-Survey